Human genetics: One gene, twenty years
During the day, Lap-Chee Tsui and Francis Collins were attending a gene-mapping workshop. At night they were scrutinizing the pages churning out of a fax machine they had set up in a dorm room. Their hunt for the cause of cystic fibrosis had reached a gene that looked from its sequence like it might have a role in transporting ions through cell membranes, a process that goes awry in those with the disease. The fax they received that night from Tsui’s lab showed that many people who have cystic fibrosis lack three base pairs from both copies of this gene, whereas those without the disease always have at least one copy intact. With that fax, on a rainy night in May 1989, "I was convinced — that was the moment," Collins says.
Four months later a four-year-old boy with cystic fibrosis, Danny Bessette, was shown sitting cross-legged on the cover of Science, framed by a rainbow of chromosomes. Inside the magazine, three papers1,2,3 laid out the details of the discovery of the gene responsible for Bessette’s condition — the first gene for a human disease discovered without the help of an already-known protein sequence or any clue to its whereabouts. "In this issue … there is a story that does not begin at the beginning or end at the end, but has a very happy middle," wrote Science’s editor Daniel Koshland4. "One in 2000 children born each year with a fatal defect now has a greater chance for a happy future." By that stage, news of the finding had already leaked to the media, been the subject of two hastily assembled press conferences and been trumpeted in newspapers worldwide. "It would be difficult to overstate the importance of the cloning of the cystic fibrosis gene," wrote geneticist Peter Goodfellow in Nature that month5. "The implications of this research are profound: there will be large spin offs in basic biology, especially in cell physiology, but the largest impact will be medical."
So far, Goodfellow’s prediction has proved wrong, at least as far as medical impact is concerned. As Jack Riordan, who collaborated with Tsui and Collins on the original discovery, puts it: "The disease has contributed much more to science than science has contributed to the disease."