Future Nanorobot Tetanus Treatment Concept

Tetanus is caused by the tetanus bacterium Clostridium tetani. Tetanus is often associated with rust, especially rusty nails, but this concept is somewhat misleading. Objects that accumulate rust are often found outdoors, or in places that harbour anaerobic bacteria, but the rust itself does not cause tetanus nor does it contain more C. tetani bacteria. The rough surface of rusty metal merely provides a prime habitat for C. tetani endospores to reside in, and the nail affords a means to puncture skin and deliver endospores deep within the body at the site of the wound.

 

In the spore form, C. tetani can remain inactive in the soil. But it can remain infectious for more than 40 years. You can get tetanus infection when the spores enter your body through an injury or wound.

 

The spores release bacteria that spread in the body and make a poison called tetanospasmin (TeTx). This poison blocks nerve signals from your spinal cord to your muscles, causing severe muscle spasms. The spasms can be so powerful that they tear the muscles or cause fractures of the spine. Tetanus leads to death in about 1 in 10 cases. Death can occur within four days.
Unlike many infectious diseases, recovery from naturally acquired tetanus does not usually result in immunity to tetanus. This is due to the extreme potency of the tetanospasmin toxin; even a lethal dose of tetanospasmin is insufficient to provoke an immune response.

 

Tetanus can be prevented by vaccination with tetanus toxin.[1] The CDC recommends that adults receive a booster vaccine every ten years,[2] and standard care practice in many places is to give the booster to any patient with a puncture wound who is uncertain of when he or she was last vaccinated, or if he or she has had fewer than three lifetime doses of the vaccine. The booster may not prevent a potentially fatal case of tetanus from the current wound, however, as it can take up to two weeks for tetanus antibodies to form. But in a lot of cases it can be late.

 

In the  Nanomedicine vision of a future anti-bacterial treatment, artificial micro and nanomechanisms offer simple and effefctive treatment without side effects. The concept depends on sophisticated medical nanomechanical devices, or nanorobots. These tiny artificial nanoelectromechanical systems will change 90% of traditional medicine treatments, make them faster, mopre effective and more efficient.

 

 

The conceptual anti-tetanus nanorobot  destroys C.tetani bacteria with its spores [3]. Moreover, it can denaturize TeTx toxin, which lead to muscular spasms and death.

 

Nanorobotic models offer a vision of future tetanus treatment and other toxic bacteria using medical nanorobots. The following animation shows in detail how a future tetanus treatment might be done.

YouTube link to animation: http://www.youtube.com/watch?v=Q3M4S7_ISs0

 

The tetanus-killer nanorobot uses high temperature to destroy bacteria and its spores. Due to small size of nanorobot this thermal treatment will be quite local, and can’t harm the nearby living tissues. The surface of the nanobot will be covered by bioconjugated polymer, which have high affinity to C.tetani surface protein markers. After deploying inside bacteria, nanorobot inject in cytoplasm heating cartridges, which heated by inner thermal engine [4]. In general, it can be as piezoelectric drive, or even distant infrared radiation source, controlled by physician.

 

The goal is to heat nanobot to 300F up in a seconds, and have very local high temperature source. In this case C.tetani and TeTx toxin will be totally eliminated.

 

Moreover, this technology can be used in treatment of various bacterial diseases. Nanorobots use specific markers can “catch-and-destroy” identified bacteria species  controlled by physician.
[1] Hopkins, A.; Lahiri, T.; Salerno, R.; Heath, B. (1991). “Diphtheria, tetanus, and pertussis: recommendation for vaccine use and other preventive measures. Recommendations of the Immunization Practices Advisory committee (ACIP)”. MMWR Recomm Rep 40 (RR–10): 1–28. doi:10.1542/peds.2006-0692. PMID 1865873.

 

[2] CDC Features – Tetanus: Make Sure You and Your Child Are Fully Immunized. Retrieved 2010-08-30.

 

[3] Not an actual clinic treatment. The video depicts a plausible concept for a medical treatment that might someday be developed.

 

[4] Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999

 

###
Nanobotmodels was established in 2007 with the goal of developing highly innovative, digital graphics to depict actual and conceptual technologies via the synergistic fusion of art and science. The still nascent, yet prospectively powerful discipline of nanotechnology is poised to radically transform medicine, engineering, biotechnology, electronics and myriad other sectors in the relative near-term. Hence, visionary artistic renderings that portray various aspects of this exciting nanofuture will be beneficial in facilitating a clear understanding of its fundamental concepts to a broad demographic.

 

Nanobotmodels generates imaginative and engaging state-of-the-art nanotechnology and nanomedical illustrations and animations. Any prototypical component, device, system or far flung concept that might be conceived of can be translated into captivating and colorful photorealistic animated or static renderings and presentation materials…. We bring them all to life for you!