Robotics insights through flies’ eyes

Specific flight patterns are simulated by controlling optical "flux fields" presented to the fly. Photo credit: Max-Planck Institute for NeurobiologyCommon and clumsy-looking, the blow fly is a true artist of flight. Suddenly changing direction, standing still in the air, spinning lightning-fast around its own axis, and making precise, pinpoint landings – all these maneuvers are simply a matter of course. Extremely quick eyesight helps to keep it from losing orientation as it races to and fro. Still, how does its tiny brain process the multiplicity of images and signals so rapidly and efficiently?

To get to the bottom of this, members of a Munich-based "excellence cluster" called Cognition for Technical Systems or CoTeSys have created an unusual research environment: a flight simulator for flies. Here they’re investigating what goes on in flies’ brains while they’re flying. Their goal is to put similar capabilities in human hands – for example, to aid in developing robots that can independently apprehend and learn from their surroundings.

A fly’s brain enables the unbelievable – the animal’s easy negotiation of obstacles in rapid flight, split-second reaction to the hand that would catch it, and unerring navigation to the smelly delicacies it lives on. Researchers have long known that flies take in many more images per second than humans do. For human eyes, anything more than 25 discrete images per second will merge into a continuous movement. A blow fly, on the other hand, can perceive 100 images per second as discrete sense impressions and interpret them quickly enough to steer its movement and precisely determine its position in space.

Read Original Article

Leave a Reply